An Introduction to Data Mining and Statistical Learning

Gilbert Saporta
Chaire de Statistique Appliquée \& CEDRIC, CNAM, 292 rue Saint Martin, F-75003 Paris
gilbert.saporta@cnam.fr
http://cedric.cnam.fr/~saporta

Outline

1. What is data mining?
2. Some unsupervised methods
3. Some supervised methods
4. Statistical modelling
5. Predictive modelling and statistical learning
6. Discussion

1. What is data mining?

\square Data mining is a new field at the frontiers of statistics and information technologies (database management, artificial intelligence, machine learning, etc.) which aims at discovering structures and patterns in large data sets.

1.1 Definitions:

\square U.M.Fayyad, G.Piatetski-Shapiro : " Data Mining is the nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data "
D.J.Hand : " I shall define Data Mining as the discovery of interesting, unexpected, or valuable structures in large data sets"

- The metaphor of Data Mining means that there are treasures (or nuggets) hidden under mountains of data, which may be discovered by specific tools.
- Data Mining is concerned with data which were collected for another purpose: it is a secondary analysis of data bases that are collected Not Primarily For Analysis, but for the management of individual cases (Kardaun, T.Alanko,1998) .
- Data Mining is not concerned with efficient methods for collecting data such as surveys and experimental designs (Hand, 2000)

What is new? Is it a revolution?

The idea of discovering facts from data is as old as Statistics which " is the science of learning from data (J.Kettenring, former ASA president).
\square In the 60's: Exploratory Data Analysis (Tukey, Benzecri..) « Data analysis is a tool for extracting the diamond of truth from the mud of data. » (J.P.Benzécri 1973)

1.2 Data Mining started from:

- an evolution of DBMS towards Decision Support Systems using a Data Warehouse.
- Storage of huge data sets: credit card transactions, phone calls, supermarket bills: giga and terabytes of data are collected automatically.
- Marketing operations: CRM (customer relationship management)
- Research in Artificial Intelligence, machine learning, KDD for Knowledge Discovery in Data Bases

1.3 Goals and tools

- Data Mining is a < secondary analysis » of data collected in an other purpose (management eg)
\square Data Mining aims at finding structures of two kinds : models and patterns
- Patterns
\square a characteristic structure exhibited by a few number of points : a small subgroup of customers with a high commercial value, or conversely highly risked.
- Tools: cluster analysis, visualisation by dimension reduction: PCA, CA etc. association rules.

Models

Building models is a major activity for statisticians econometricians, and other scientists. A model is a global summary of relationships between variables, which both helps to understand phenomenons and allows predictions.
\square DM is not concerned with estimation and tests, of prespecified models, but with discovering models through an algorithmic search process exploring linear and non-linear models, explicit or not: neural networks, decision trees, Support Vector Machines, logistic regression, graphical models etc.
\square In DM Models do not come from a theory, but from data exploration.

process or tools?

- DM often appears as a collection of tools presented usually in one package, in such a way that several techniques may be compared on the same data-set.
- But DM is a process, not only tools:

Data \square Information \square Knowledge
preprocessing
analysis

The challenge of massive data sets: volume explosion (Michel Bera, 2009)

- In the 90s

- Today

Large in	
Neural Networks	Statistics
100,000 Weights	50 parameters
50,000 examples	200 cases

- Web transactions At Yahoo! (Fayyad, KDD 2007)
± 16 B events - day, 425 M visitors - month, 10 Tb data / day
- Radio-frequency identification (Jiawei, Adma 2006)

A retailer with 3,000 stores, selling 10,000 items a day per store 300 million events per day (after redundancy removal)

- Social network (Kleinberg, KDD 2007)
4.4-million-node network of declared friendships on blogging community 240-million-node network of all IM communication over one month on Microsoft Instant Messenger
- Cellular networks

A telecom carrier generates hundreds of millions of CDRs / day The network generates technical data : $\mathbf{4 0} \mathbf{M}$ events / day in a large city
2. An overview of non supervised methods

- Dimension reduction

Factor analysis
Cluster analysis
Data visualisation

- parallel coordinates

Assocation rules discovery

Hierarchical cluster analysis

Composition of mill of 25 mamunals

Parallel coordinates

2. Association rule discovery, or market basket analysis

- Illustration with a real industrial example at Peugeot-Citroen car manufacturing company. (Ph.D of Marie Plasse).

$\underline{\text { ASSOCIATION RULES MINING }}$

- Marketing target : basket data analysis

Basket	Purchases
1	\{bread, butter, milk\}
2	\{bread, meat \}
\ldots	
\mathbf{n}	\{fruit juice, fish, strawberries, bread\}

"90\% of transactions that purchase bread and butter
also purchase millk" (Agrawal et al., 1993)
\{bread, butter \} \Rightarrow \{milk \}

- Reliability : Support : \% of transactions that contain all items of A and C

$$
\sup (A \Rightarrow C)=P(A \cap C)=P(C / A) \cdot P(A)
$$

- Supp $=30 \% \Rightarrow 30 \%$ of transactions contain
- Strength : Confidence : \% of transactions that contain C among the ones that contain C

$$
\operatorname{conf}(A \Rightarrow C)=P(C / A)=\frac{P(A \cap C)}{P(A)}=\frac{\sup (A \Rightarrow C)}{\sup (A)}
$$

- Conf $=90 \% \rightarrow 90 \%$ of transactions that contain

Support: $\mathrm{P}(\mathrm{A} \cap \mathrm{C})$

- Confidence: $\mathrm{P}(\mathrm{C} / \mathrm{A})$
- thresholds s0 et c0
- Interesting result only if $P(C / A)$ is much larger than $\mathrm{P}(\mathrm{C})$ or $\mathrm{P}(\mathrm{C} /$ not A$)$ is low.
- Lift:

$$
\frac{P(C / A)}{P(C)}=\frac{P(C \cap A)}{P(A) P(C)}
$$

MOTIVATION

- Industrial data :
- A set of vehicles described by a large set of binary flags
- Motivation : decision-making aid
- Always searching for a greater quality level, the car manufacturer can take advantage of knowledge of associations between attributes.

Vehicles	A1	A2	A2	A2	A3	\cdots	AP
0	1	0	0	1	0		0
a	0	0	0	1	1	0	
0	0	1	0	0	1		0
a	1	0	0	0	1		0
a	0	0	1	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	1	0	0	
0	0	0					

- Our work :
- We are looking for patterns in data : Associations discovery

DATA FEATURE

- Data size :
- More than 80000 vehicles (\approx transactions) $\rightarrow 4$ months of manufacturing
- More than 3000 attributes (₹items)
- Sparse data :

DATA FEATURE

- Count of co-occurrences per vehicle :

OUPUT : ASSOCIATION RULES

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Minimum support (minimum count } \\
\text { vehicles that support the rule) }\end{array} & \text { of } & \begin{array}{c}\text { Minimum } \\
\text { confidence }\end{array} & \text { Count of rules }\end{array}
$$ \begin{array}{c}Maximum size

of rules\end{array}\right]\)| 500 | 50% | 16 | 3 |
| :---: | :---: | :---: | :---: |
| 400 | 50% | 29 | 3 |
| 300 | 50% | 194 | 5 |
| 250 | 50% | 1299 | 6 |
| 200 | 50% | 102981 | 10 |
| 100 | 50% | 1623555 | 13 |

- Aims :
- Reduce count of rulles
- Reduce size of rules
- A first reduction is obtained by manual grouping :

Minimum support	Minimum confidence	Count of rules	Maximum size of rules
100	50%	600636	12

COMBINING CLUSTER ANALYSIS AND ASSOCIATION RULES

- 10-clusters partition with hierarchical clustering and Russel Rao coefficient

Cluster	Number of variables in the cluster	Number of rules found in the cluster	Maximum size of rules
1	2	0	0
2	12	481170	12
3	2	0	0
4	5	24	4
5	117	55	4
6	4	22	4
7	10	33	4
8	5	22	4
9	16	1	2
10	2928	61	4

- Cluster 2 is atypical and produces many complex rules
- Mining association rules inside each cluster except atypical cluster :

	Count of rules	Maximum size of rules	Reduction of the count of rules
Without clustering	600636	12	.
Ward - Russel \& Rao	218	4	More than 99%

- The number of rules to analyse has significantly decreased
- The output rules are more simple to analyse
- Clustering has detected an atypical cluster of attributes to treat separately

3. Some supervised methods

Trees
Scores

Decision trees

```
$ Sipina for Windows 2.5-[graph ]
$ File Edit Analysis View Rules Window ?
```


A scoring case study

An insurance example

1106 belgian automobile insurance contracts :

- 2 groups: 《 1 good », « 2 bad »
-9 predictors: 20 categories
Use type(2), gender(3), language (2), agegroup (3), region (2), bonus-malus (2), horsepower (2), duration (2), age of vehicle (2)

Principal plane MCA

Fisher's LDA

Score $=$ 6.90 F1-0.82 F3 + 1.25 F5 + 1.31 F8-1.13 F9-3.31 F10

Transforming scores

Standardisation between 0 and 1000 is often convenient

Linear transformation of score implies the same transformation for the cut-off point

Scorecard

logistic regression

$$
P\left(G_{1} \mid \mathbf{x}\right)=\frac{\exp (S(\mathbf{x}))}{1+\exp (S(\mathbf{x}))}=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}}}
$$

- A direct estimation of the posterior probability
\square Estimation techniques differ: least squares in LDA , conditional maximum likelihood in logistic regression.

Performance measures for supervised binary classification

Misclassification rate or score performance?
Error rate implies a strict decision rule.

- Scores

A score is a rating: the threshold is chosen by the end-user
Probability $\mathrm{P}(\mathrm{G} 1 / \mathrm{x})$: also a score ranging from 0 to 1. Almost any technique gives a score.

ROC curve and AUC

A synthesis of score performance for any threshold $s . \mathbf{x}$ is classified in group 1 if $S(\mathbf{x})>s$
Using s as a parameter, the ROC curve links the true positive rate $1-\beta$ to the false positive rate α.

Test value>

ROC curve and AUC

\square AUC : area under curve
\square Probability of concordance $\mathrm{P}(\mathrm{X} 1>\mathrm{X} 2)$
$A U C=\int_{s=+\infty}^{s=-\infty}(1-\beta(s)) d \alpha(s)$

- Estimated by the proportion of concordant pairs among $\mathrm{n}_{1} \mathrm{n}_{2}$
- Related to MannWhitney's U statistic :
 AUC $=\mathrm{U} / \mathrm{n} 1 \mathrm{n} 2$

Model choice through AUC

\square As long as there is no crossing: the best model is the one with the largest AUC or G.

- No need of nested models
- But comparing models on the basis of the learning sample may be misleading since the comparison will be generally in favour of the more complex model.
- Comparison should be done on hold-out (independent) data to prevent overfitting

Performance comparisons

4.Statistical models

- About statistical models
- Unsupervised case: a representation of a probabilisable real world: X r.v. \in parametric family $f(x ; \theta)$
- Supervised case: response $\mathrm{Y}=\Phi(\mathrm{X})+\varepsilon$
- Different goals
-Unsupervised: good fit with parsimony
Supervised: accurate predictions
4.1. Model choice and penalized likelihood
- The likelihood principle (Fisher, 1920) sample of n iid observations:

$$
L\left(x_{1}, . ., x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

The best model is the one which maximizes the likelihood, ie the probability of having observed the data. ML estimation etc.

Overfitting risk

- Likelihood increases with the number of parameters..
\square Variable selection: a particular case of model selection
Need for parsimony
- Occam's razor

An English Franciscan friar and scholastic philosopher. He was summoned to Avignon in 1324 by Pope John XXII on

William of Occham (1285-1348)
from wikipedia accusation of heresy, and spent four years there in effect under house arrest.
William of Ockham has inspired in U.Eco's The Name of the Rose, the monastic detective William of Baskerville, who uses logic in a similar manner.
Occam's razor states that the explanation of any phenomenon should make as few assumptions as possible, eliminating, or "shaving off", those that make no difference in the observable predictions of the explanatory hypothesis or theory.

lex parsimoniae :

entia non sunt multiplicanda praeter necessitatem,
or:
entities should not be multiplied beyond necessity.

penalized likelihood

Nested (?) family of parametric models, with k parameters: trade-off between the fit and the complexity
Akaïke :

$$
\square A I C=-2 \ln (\mathrm{~L})+2 \mathrm{k}
$$

Schwartz :

$$
\square \mathrm{BIC}=-2 \ln (\mathrm{~L})+\mathrm{k} \ln (\mathrm{n})
$$

\square Choose the model which minimizes AIC or BIC

4.2 AIC and BIC: different theories

AIC : approximation of Kullback-Leibler divergence between the true model and the best choice inside the family

$$
\begin{gathered}
I(f ; g)=\int f(t) \ln \frac{f(t)}{g(t)} d t=E_{f}\left(\ln (f(t))-E_{f}(\ln (g(t))\right. \\
E_{\hat{\theta}} E_{f}(\ln (g(t ; \hat{\theta})) \sim \ln (L(\hat{\theta}))-k
\end{gathered}
$$

AIC and BIC: different theories

BIC : bayesian choice between models M_{i}. For each model $P\left(\theta_{i} / M_{i}\right)$. The posterior probability of M_{i} knowing the data \mathbf{x} is proportional to $\mathrm{P}(\mathrm{Mi})$ $P(\mathbf{x} / \mathrm{Mi})$. With equal priors $\mathrm{P}\left(\mathrm{M}_{\mathrm{i}}\right)$:

$$
\ln \left(P (\mathbf { x } / M _ { i }) \sim \operatorname { l n } \left(P\left(\mathbf{x} / \hat{\theta}_{i}, M_{i}\right)-\frac{k}{2} \ln (n)\right.\right.
$$

The most probable model Mi a posteriori is the one with minimal BIC.

AIC and BIC: different uses

BIC favourises more parsimonious models than AIC due to its penalization
\square AIC (not BIC) is biased : if the true model belongs to the family Mi, the probability that AIC chooses the true model does not tend to one when the number of observations goes to infinity.
\square It is inconsistent to use AIC and BIC simultaneously

- Other penalisations such as AIC $3=-2 \ln (L(\hat{\theta}))+3 k$ theory?

4.3 Limitations

- Refers to a "true" which generally does not exist, especially if n tends to infinity. "Essentially, all models are wrong, but some are useful " G.Box (1987)
- Penalized likelihood cannot be computed for many models:
Decision trees, neural networks, ridge and PLS regression etc.
No likelihood, which number of parameters?

5. Predictive modelling

In Data Mining applications (CRM, credit scoring etc.) models are used to make predictions.
Model efficiency: capacity to make good predictions and not only to fit to the data (forecasting instead of backforecasting: in other words it is the future and not the past which has to be predicted).

Classical framework
-Underlying theory

- Narrow set of models
- Focus on parameter estimation and goodness of fit
Error: white noise

Data mining context

\square Models come from data
\square Algorithmic models
Focus on control of generalization error
Error: minimal

The black-box problem and supervised learning (N.Wiener, V.Vapnik)
\square Given an input x, a non-deterministic system gives a variable $y=f(x)+e$. From n pairs $\left(x_{i} y_{i}\right)$ one looks for a function which approximates the unknown function f .

- Two conceptions:
- A good approximation is a function close to f
- A good approximation is a function which has an error rate close to the black box, ie which performs as well

5.1 Model choice and Statistical Learning Theory

- How to choose a model in a family of models (eg: degree of a polynomial regression)?

A too complex model: too good fit

A too simple (but robust) model: bad fit

K-nearest neighbours

Infarctus data set

K-nearest neighbours

Elements of Statistical Learning (2nd Ed.) (c) Hastie, Tibshirani \& Friedman 2009 Chap 2

1-Nearest Neighbor Classifier

5.2 Model complexity and prediction error

Figure 2.11: Test and training error as a function of model complexity.

Model complexity

- The more complex a model, the better the fit but with a high prediction variance.
Optimal choice: trade-off
But how can we measure the complexity of a model?
5.3 Vapnik-Cervonenkis dimension for binary supervised classification
\square A measure of complexity related to the separating capacity of a family of classifiers.
- Maximum number of points which can be separated by the family of functions whatever are their labels ± 1

Example

In 2-D, the VC dimension of "free" linear classifiers is 3
(in $\mathrm{p}-\mathrm{D}$ VCdim $=\mathrm{p}+1$)

But VC dimension is NOT equal to the number of free parameters: can be more or less

The VC dimension of $\quad f(x, w)=\operatorname{sign}(\sin (w . x))$

$$
c<x<1, c>0,
$$

with only one parameter w is infinite.

Hastie et al. 2001

\square Consistent learning

h must be finite
Learning error

Non consistent learning

Vapnik's inequality $\quad R<R_{\text {emp }}+\sqrt{\frac{h(\ln (2 n / h)+1)-\ln (\alpha / 4)}{n}}$

5.4 Model choice by Structural Risk Minimization (SRM)

- Vapnik's inequality:

$$
R<R_{\mathrm{emp}}+\sqrt{\frac{h(\ln (2 n / h)+1)-\ln (\alpha / 4)}{n}}
$$

- Comments:
the complexity of a family of models may increase when n increases, provided h is finite
- Small values of h gives a small difference between R and Remp. It explains why regularized (ridge) regression, as well as dimension reduction techniques, provide better results in generalisation than ordinary least squares.
- With SRM, instead of minimizing R, one minimizes the upper bound: $\mathrm{R}_{\mathrm{emp}}+$ confidence interval.
- For any distribution, SRM provides the best solution with probability 1 (universally strong consistency) Devroye (1996) Vapnik (2006).

5.5 High dimensional problems and regularization

- Many ill-posed problems in applications (eg genomics) where p>>n
- In statistics (LS estimation) Tikhonov regularization = ridge regression; a constrained solution of Af $=\mathrm{F}$ under $\Omega(\mathrm{f}) \leq \mathrm{c}$ (convex and compact set)

$$
\min \left(\|A f-F\|^{2}+\gamma \Omega(f)\right)
$$

- Other techniques: projection onto a low dimensional subspace: principal components (PCR), partial least squares regression (PLS), support vector machines (SVM)

Ridge regression

the VC dimension of $f(X, w)=\operatorname{sign}\left(\sum_{i=1}^{p}\left(w_{i} X_{i}\right)+1\right)$ subject to: $\|W\|^{2}=\sum_{i=1}^{p} w_{i}^{2} \leq \frac{1}{C}$ may be far lower than $p+1$:

$$
h \leq \min \left[\operatorname{int}\left(\frac{R^{2}}{C^{2}}\right) ; p\right]+1 \quad\|X\| \leq R
$$

- Since Vapnik's inequality is an universal one, the upper bound may be too large. Exact VC-dimension are very difficult to obtain, and in the best case, one only knows bounds
But even if the previous inequality is not directly applicable, SRM theory proved that the complexity differs from the number of parameters, and gives a way to handle methods where penalized likelihood is not applicable.

5.6 Empirical model choice

- The 3 samples procedure (Hastie \& al., 2001)
\square Learning set: estimates model parameters
\square Test : selection of the best model
\square Validation : estimates the performance for future data
- Resample (eg: 'bootstrap, 10-fold CV, ...)
- Final model : with all available data

Estimating model performance is different from estimating the model

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\mathrm{err}}$, while the light red curves show the conditional test error $\operatorname{Err}_{\mathcal{T}}$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\mathrm{E}[\overline{\mathrm{err}}]$.

Training set 70\%, validation set 30\%, 30 times

- Linear discriminant analysis performs as well as logistic regression AUC has a small (due to a large sample) but non neglectable variability
-Large variability in subset selection (Saporta, Niang, 2006)

6 . Discussion

- Models of data $=$ models for prediction
- Models in Data Mining: no longer a (parsimonious) representation of real world coming from a scientific theory but merely a «blind» prediction technique.
- Penalized likelihood is intellectually appealing but of no help for complex models where parameters are constrained.
Statistical Learning Theory provides the concepts for supervised learning in a DM context: avoids overfitting and false discovery risk.
- One should use adequate and objective performance measures and not "ideology" to choose between models: eg AUC for binary classification
- Empirical comparisons need resampling but assume that future data will be drawn from the same distribution: uncorrect when there are changes in the population
New challenges:
- Data streams
- Complex data

References

Académie des Sciences (2000): Rapport sur la science et la technologie n8, La statistique,
J.Friedman (1997) : Data Mining and statistics, what's the connection? http://www-stat.stanford.edu/~jhf/ftp/dmstat.ps

- Giudici, P. (2003) Applied Data Mining, Wiley
- Hastie, T., Tibshirani, F., Friedman J. (2009) Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springer
- Tufféry, S. (2007) Data Mining et Statistique Décisionnelle, Technip

