
An Introduction to Data Mining 
and Statistical Learning

Gilbert Saporta
Chaire de Statistique Appliquée & CEDRIC, CNAM, 
292 rue Saint Martin, F-75003 Paris

gilbert.saporta@cnam.fr
http://cedric.cnam.fr/~saporta

mailto:gilbert.saporta@cnam.fr
http://cedric.cnam.fr/~saporta


CNAM, 2009 2

Outline

1. What is data mining?
2. Some unsupervised methods
3. Some supervised methods
4. Statistical modelling
5. Predictive modelling and statistical learning
6. Discussion



CNAM, 2009 3

1. What is data mining?

Data mining is a new field at the frontiers of 
statistics and information technologies (database 
management, artificial intelligence, machine 
learning, etc.) which aims at discovering structures 
and patterns in large data sets. 
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1.1 Definitions:

U.M.Fayyad, G.Piatetski-Shapiro : “ Data Mining is 
the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable 
patterns in data ”
D.J.Hand : “ I shall define Data Mining as the 
discovery of interesting, unexpected, or valuable 
structures in large data sets”
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The metaphor of Data Mining means that there are 
treasures (or nuggets) hidden under mountains of 
data, which may be discovered  by specific tools.
Data Mining is concerned with data which were 
collected for another purpose: it is a secondary 
analysis of data bases that are collected Not 
Primarily For Analysis, but for the management of 
individual cases (Kardaun, T.Alanko,1998) .
Data Mining is not concerned with efficient methods 
for collecting data such as surveys and experimental 
designs (Hand, 2000)
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The idea of discovering facts from data is as old as 
Statistics which “ is the science of learning from data ”
(J.Kettenring, former ASA president).

In the 60’s: Exploratory Data Analysis (Tukey, 
Benzecri..) « Data analysis is a tool for extracting 
the diamond of truth from the mud of data. »
(J.P.Benzécri 1973)

What is new? Is it a revolution ?
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1.2 Data Mining started from:

an evolution of DBMS towards Decision Support 
Systems using a Data Warehouse.
Storage of huge data sets: credit card transactions, 
phone calls, supermarket bills: giga and terabytes of
data are collected automatically.
Marketing operations: CRM (customer relationship 
management)
Research in Artificial Intelligence, machine learning, 
KDD for Knowledge Discovery in Data Bases 
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1.3 Goals and tools

Data Mining is a « secondary analysis » of data 
collected in an other purpose (management eg)
Data Mining aims at finding structures of two kinds : 
models and patterns

Patterns
a characteristic structure exhibited by a few number of 
points : a small subgroup of customers with a high 
commercial value, or conversely highly risked. 
Tools: cluster analysis, visualisation by dimension reduction: 
PCA, CA etc. association rules.
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Models

Building models is a major activity for statisticians 
econometricians, and other scientists. A model is a 
global summary of relationships between variables, 
which both helps to understand phenomenons and 
allows predictions.
DM is not concerned with estimation and tests, of 
prespecified models, but with discovering models 
through an algorithmic search process exploring 
linear and non-linear models, explicit or not: neural 
networks, decision trees, Support Vector Machines, 
logistic regression, graphical models etc. 
In DM Models do not come from a theory, but from 
data exploration.
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process or tools?

DM often appears as a collection of tools presented 
usually in one package, in such a way that several 
techniques may be compared on the same data-set.
But DM is a process, not only tools:

Data Information Knowledge

preprocessing analysis
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The challenge of massive data 
sets: volume explosion (Michel Béra, 2009)

• In the 90s 

• Today
• Web transactions At Yahoo ! (Fayyad, KDD 2007)

± 16 B events - day, 425 M visitors - month, 10 Tb data / day

• Radio-frequency identification (Jiawei, Adma 2006)
A retailer with 3,000 stores, selling 10,000 items a day per store

300 million events per day (after redundancy removal)

• Social network (Kleinberg, KDD 2007)
4.4-million-node network of declared friendships on blogging community

240-million-node network of all IM communication over one month on      
Microsoft Instant Messenger

• Cellular networks
A telecom carrier generates hundreds of millions of CDRs / day
The network generates technical data : 40 M events / day in a large city

11
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2. An overview of non 
supervised methods

Dimension reduction
Factor analysis
Cluster analysis

Data visualisation
parallel coordinates

Assocation rules discovery
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Hierarchical cluster analysis
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Parallel coordinates
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2. Association rule discovery, or 
market basket analysis

Illustration with a real industrial example at 
Peugeot-Citroen car manufacturing company.
(Ph.D of Marie Plasse).
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ASSOCIATION RULES MINING

Marketing target : basket data analysis

PurchasesBasket

{fruit juice, fish, strawberries, bread}n
…

{bread, meat}2
{bread, butter, milk}1

"90% of transactions that purchase bread and butter
also purchase milk" (Agrawal et al., 1993)

⇒{ bread, butter } {milk }

antecedent

Itemset A ⇒
consequent

Itemset C where    A ∩ C = Ø
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Reliability : Support : % of transactions that contain all items of A and C 

sup( A C ) P( A C ) P( C / A ) P( A )⇒ = ∩ = ⋅

Strength : Confidence :  % of  transactions that contain C among the ones that 
contain C

P( A C ) sup( A C )conf ( A C ) P(C / A)
P( A) sup( A)
∩ ⇒

⇒ = = =

Supp = 30 % 30% of transactions contain                +             + 

Conf = 90 % 90% of transactions that contain             +          , contain also

⇒{bread, butter } { milk }

⇒
antecedent
Itemset A

consequent
Itemset C
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Support: P(A∩C)
Confidence: P(C/A)
thresholds s0 et c0
Interesting result only if P(C/A) is much larger 
than P(C) or P(C/not A) is low.
Lift: ( / ) ( )

( ) ( ) ( )
P C A P C A

P C P A P C
∩

=
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MOTIVATION

Motivation : decision-making aid
Always searching for a greater quality level, the 
car manufacturer can take advantage of 
knowledge of associations between attributes. 

Industrial data : 
A set of vehicles described by a large set of 
binary flags

Our work : 
We are looking for patterns in data : Associations discovery

Vehicles
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DATA FEATURE

Data size :
More than 80 000 vehicles (≈transactions) 4 months of manufacturing
More than 3000 attributes (≈items)

2 %1621

4 %3242

6 %4863

8 %6485

10 %8106

12 %9727 

Count of 
vehicles

Count & percent of the 100 more frequent attributes

Sparse data :
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DATA FEATURE

Count of co-occurrences per vehicle :

Count of attributes owned by vehicle

Ve
hi

cl
e 

Pe
rc

en
t
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OUPUT : ASSOCIATION RULES

Minimum support (minimum count of 
vehicles that support the rule)

Minimum 
confidence Count of rules Maximum 

size of rules
500 50 % 16 3

Minimum support (minimum count of 
vehicles that support the rule)

Minimum 
confidence Count of rules Maximum 

size of rules
500 50 % 16 3
400 50 % 29 3

Minimum support (minimum count     of 
vehicles that support the rule)

Minimum 
confidence Count of rules Maximum  size 

of rules
500 50 % 16 3
400 50 % 29 3
300 50 % 194 5
250 50 % 1299 6
200 50 % 102 981 10
100 50 % 1 623 555 13

Aims : 
Reduce count of rules
Reduce size of rules

Minimum 
support 

Minimum 
confidence Count of rules Maximum  size of rules

100 50 % 600636 12

A first reduction is obtained by manual grouping :
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COMBINING CLUSTER ANALYSIS AND ASSOCIATION 
RULES

10-clusters partition with hierarchical clustering and Russel Rao coefficient

Cluster Number of variables in 
the cluster

Number of rules found in 
the cluster

Maximum size of 
rules

1 2 0 0
2 12 481170 12
3 2 0 0
4 5 24 4
5 117 55 4
6 4 22 4
7 10 33 4
8 5 22 4
9 16 1 2
10 2928 61 4

Cluster 2 is atypical and  produces many complex rules
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Count of rules Maximum size of rules Reduction of the count 
of rules

Without clustering 600636 12 .
Ward - Russel & Rao 218 4 More than 99%

Mining association rules inside each cluster except atypical cluster :

The number of rules to analyse has significantly decreased
The output rules are more simple to analyse
Clustering has detected an atypical cluster of attributes to treat separately
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3. Some supervised methods

Trees
Scores 
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Decision trees
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A scoring case study
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An insurance example

1106 belgian automobile insurance contracts :
2 groups: « 1 good », « 2 bad »

9 predictors: 20 categories
Use type(2), gender(3), language (2), agegroup 
(3), region (2), bonus-malus (2), horsepower (2), 
duration (2), age of vehicle (2)
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Principal plane MCA
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Fisher’s LDA

FACTORS         CORRELATIONS       LOADINGS        
..............................................................................
1 F  1            0.719          6.9064
2 F  2            0.055          0.7149 
3 F  3           -0.078         -0.8211
4 F  4           -0.030         -0.4615
5 F  5            0.083          1.2581
6 F  6            0.064          1.0274
7 F  7           -0.001          0.2169
8 F  8            0.090          1.3133
9 F  9           -0.074         -1.1383 
10 F 10           -0.150         -3.3193     
11 F 11           -0.056         -1.4830
INTERCEPT                        0.093575    
..............................................................................
R2 =    0.57923     F  =   91.35686     
D2 =    5.49176     T2 = 1018.69159     
..............................................................................

Score= 6.90 F1 - 0.82 F3 + 1.25 F5 + 1.31 F8 - 1.13 F9 - 3.31 F10
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Transforming scores
Standardisation between 0 and 1000 is often 
convenient
Linear transformation of score implies the same 
transformation for the cut-off point
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+----------------------------------------------------------------------------+ 
|                                            | COEFFICIENTS  |  TRANSFORMED  | 
| CATEGORIES                                 | DISCRIMINANT  |  COEFFICIENTS | 
|                                            |   FUNCTION    |    (SCORE)    | 
+----------------------------------------------------------------------------+ 
|    2 . Use type                                                            | 
| USE1 - Profess.                            |       -4.577  |         0.00  | 
| USE2 - private                             |        0.919  |        53.93  | 
+----------------------------------------------------------------------------+ 
|    4 . Gender                                                             | 
| MALE - male                                |        0.220  |        24.10  | 
| FEMA - female                              |       -0.065  |        21.30  | 
| OTHE - companies                           |       -2.236  |         0.00  | 
+----------------------------------------------------------------------------+ 
|    5 . Language                                                            | 
| FREN – French                              |       -0.955  |         0.00  | 
| FLEM - flemish                             |        2.789  |        36.73  | 
+----------------------------------------------------------------------------+ 
|  24 . Birth date                                                           |                  
| BD1  - 1890-1949 BD                        |        0.285  |       116.78  | 
| BD2  - 1950-1973 BD                        |      -11.616  |         0.00  | 
| BD?  - ???BD                               |        7.064  |       183.30  | 
+----------------------------------------------------------------------------+ 
|   25 . Region                                                              | 
| REG1 - Brussels                            |       -6.785  |         0.00  | 
| REG2 – Other  regions                      |        3.369  |        99.64  | 
+----------------------------------------------------------------------------+ 
|   26 . Level of bonus-malus                                | 
| BM01 - B-M 1 (-1)                          |       17.522  |       341.41  | 
| BM02 - Others B-M (-1)                     |      -17.271  |         0.00  | 
+----------------------------------------------------------------------------+ 
|   27 . Duration of contract                                                | 
| C<86 - <86 contracts                       |        2.209  |        50.27  | 
| C>87 - others contracts                    |       -2.913  |         0.00  | 
+----------------------------------------------------------------------------+ 
|   28 . Horsepower                                                          | 
| HP1  - 10-39 HP                            |        6.211  |        75.83  | 
| HP2  - >40    HP                           |       -1.516  |         0.00  | 
+----------------------------------------------------------------------------+ 
|  29 . year of vehicle construction                                         | 
| YVC1 - 1933-1989 YVC                       |        3.515  |       134.80  | 
| YVC2 - 1990-1991 YVC                       |      -10.222  |         0.00  | 
+----------------------------------------------------------------------------+ 

Scorecard
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logistic regression

A direct estimation of the posterior 
probability
Estimation techniques differ: least squares in 
LDA , conditional maximum likelihood in 
logistic regression.

0 1 1

0 1 1

...

1 ...
exp( ( ))( | )

1 exp( ( )) 1
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+ + += =
+ +
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Performance measures for supervised binary 
classification

Misclassification rate or score performance?
Error rate implies a strict decision rule.

Scores
A score is a rating: the threshold is chosen by the 
end-user
Probability P(G1/x): also a score ranging from 0 to 
1. Almost any technique gives a score.
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ROC curve and AUC
A synthesis  of score performance for any threshold 

s . x is classified in group 1 if S(x) > s 
Using s as a parameter, the ROC curve links the true 
positive rate 1-β to the false positive rate α .
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ROC curve and AUC

AUC : area under curve
Probability of 
concordance P(X1>X2) 

Estimated by the 
proportion of concordant 
pairs among n1n2

Related to Mann-
Whitney’s U statistic : 
AUC = U/n1n2

( ( )) ( )
s

s
AUC s d sβ α

=−∞

=+∞
= −∫ 1
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Model choice through AUC

As long as there is no crossing: the best model is 
the one with the largest AUC or G.

No need of nested models

But comparing models on the basis of the learning 
sample may be misleading since the comparison will 
be generally in favour of the more complex model.
Comparison should be done on hold-out 
(independent) data to prevent overfitting
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Performance comparisons

1 - Specificity
1,00,80,60,40,20,0

Se
ns
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ty

1,0

0,8

0,6

0,4

0,2

0,0

Reference line
sclogist
scdisc

ROC curve

AUC Std Err. Asymptotic confidence Interval 95% 

Lower bound Upper bound

Scdisc 0.839 0.015 0.810 0.868

Sclogist 0.839 0.015 0.811 0.868
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4.Statistical models

About statistical models
Unsupervised case: a representation of a 

probabilisable real world: X r.v. ∈ parametric 
family f(x;θ)
Supervised case: response Y=Φ(X)+ε

Different goals
Unsupervised: good fit with parsimony
Supervised: accurate predictions
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4.1. Model choice and penalized 
likelihood

The likelihood principle (Fisher, 1920)
sample of n iid observations:

The best model is the one which maximizes the 
likelihood, ie the probability of having 
observed the data. ML estimation etc.

( ) ( )1
1

,.., ; ;
n

n i
i

L x x f xθ θ
=

=∏
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Overfitting risk

Likelihood increases with the number of 
parameters..

Variable selection: a particular case of model selection

Need for parsimony
Occam’s razor
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An English Franciscan friar and scholastic philosopher. He 
was summoned to Avignon in 1324 by Pope John XXII on 
accusation of heresy, and spent four years there in effect 
under house arrest. 
William of Ockham has inspired in U.Eco’s The Name of the 
Rose, the monastic detective William of Baskerville, who uses 
logic in a similar manner.
Occam's razor states that the explanation of any 
phenomenon should make as few assumptions as possible, 
eliminating, or "shaving off", those that make no difference in 
the observable predictions of the explanatory hypothesis or 
theory. 
lex parsimoniae :

entia non sunt multiplicanda praeter 
necessitatem,

or:

entities should not be multiplied beyond 
necessity.

William of Occham
(1285–1348)

from wikipedia
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penalized likelihood

Nested (?) family of parametric models, with k 
parameters: trade-off between the fit and the 
complexity

Akaïke :  
AIC = -2 ln(L) + 2k

Schwartz :
BIC = -2 ln(L) + k ln(n)

Choose the model which minimizes AIC or BIC
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4.2 AIC and BIC:  different 
theories 

AIC : approximation of Kullback-Leibler 
divergence between the true model and the best 
choice inside the family 

( )( ; ) ( ) ln (ln( ( )) (ln( ( ))
( ) f f

f tI f g f t dt E f t E g t
g t

= = −∫

ˆ
ˆ ˆ(ln( ( ; )) ln( ( ))fE E g t L k

θ
θ θ −∼
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AIC and BIC:  different theories 

BIC : bayesian choice between m models Mi . For 
each model P(θi / Mi). The posterior probability of 
Mi knowing the data x is proportional to  P(Mi) 
P(x/Mi). With equal priors P(Mi): 

The most probable model Mi a posteriori is the 
one with minimal BIC. 

ˆln( ( / ) ln( ( / , ) ln( )
2i i i
kP M P M nθ −x x∼
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AIC and BIC: different uses

BIC favourises more parsimonious models than AIC 
due to its penalization
AIC (not BIC) is biased : if the true model belongs to 
the family Mi ,  the probability that AIC chooses the 
true model does not tend to one when the number 
of observations goes to infinity.
It is inconsistent to use AIC and BIC simultaneously
Other penalisations such as
theory? 

( )ˆ3 2ln ( ) 3AIC L kθ= − +
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4.3 Limitations

Refers to a “true” which generally does not exist, 
especially if n tends to infinity.  “Essentially, all models 
are wrong, but some are useful ” G.Box (1987)

Penalized likelihood cannot be computed for many 
models:

Decision trees, neural networks, ridge and PLS 
regression etc. 
No likelihood, which number of parameters?
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5. Predictive modelling

In Data Mining applications (CRM, credit 
scoring etc.) models are used to make 
predictions. 
Model efficiency: capacity to make good 
predictions and not only to fit to the data 
(forecasting instead of backforecasting: in 
other words it is the future and not the past 
which has to be predicted).
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Classical framework
Underlying theory
Narrow set of models
Focus on parameter 
estimation and goodness 
of fit
Error: white noise

Data mining context
Models come from data
Algorithmic models
Focus on control of 
generalization error
Error: minimal
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The black-box problem and supervised 
learning (N.Wiener, V.Vapnik)

Given an input x, a non-deterministic system gives a
variable y = f(x)+e. From n pairs (xi,yi) one looks for 
a function which approximates the unknown 
function f.
Two conceptions:

• A good approximation is a function close to f
• A good approximation is a function which has 

an error rate close to the black box, ie which 
performs as well 
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5.1 Model choice and Statistical 
Learning Theory

How to choose a model in a family of models 
(eg: degree of a polynomial regression)?

x

Y

A too complex model:
too good fit

A too simple (but robust) model: 
bad fit
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K-nearest neighbours

Infarctus data set  
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K-nearest neighbours
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5.2 Model complexity and prediction 
error
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Model complexity

The more complex a model, the better the fit 
but with a high prediction variance.
Optimal choice: trade-off 
But how can we measure the complexity of a 
model?
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5.3 Vapnik-Cervonenkis dimension for binary 
supervised classification

A measure of complexity related to the 
separating capacity of a family of classifiers. 

Maximum number of points which can be 
separated by the family of functions whatever 
are their labels ±1
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Example

In 2-D, the VC dimension of “free” linear 
classifiers is 3             (in p-D VCdim=p+1)
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But VC dimension is NOT equal to the 
number of free parameters: can be more 
or less

The VC dimension of    f(x,w) = sign (sin (w.x) )
c < x < 1, c>0,

with only one parameter w is infinite.

Hastie et al. 2001
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Consistent learning Non consistent learning

Generalization error

Learning error

n

Learning error

Generalization error

h must be finite

( )( )
emp

ln 2 1 ln ( 4)h n h
R R

n
α+ −

< +Vapnik’s inequality
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5.4 Model choice by Structural Risk 
Minimization (SRM)

Vapnik’s inequality:

Comments: 
the complexity of a family of models may increase  when n 
increases, provided h is finite 
Small values of h gives a small  difference between R and 
Remp . It explains why regularized (ridge) regression,  as 
well as dimension reduction techniques, provide better 
results in generalisation than ordinary least squares.

( )( )
emp

ln 2 1 ln ( 4)h n h
R R

n
α+ −

< +
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With SRM, instead of 
minimizing R, one minimizes 
the upper bound: Remp + 
confidence interval.
For any distribution , SRM 
provides the best solution with 
probability 1 (universally strong 
consistency) Devroye (1996) 
Vapnik (2006). 
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5.5 High dimensional problems and 
regularization

Many ill-posed problems in applications (eg genomics) where 
p>>n
In statistics (LS estimation) Tikhonov regularization = ridge 
regression; a constrained solution of Af= F under Ω(f)≤c (convex 
and compact set)

Other techniques: projection onto a low dimensional subspace: 
principal components (PCR),  partial least squares regression 
(PLS), support vector machines (SVM)

( )2min γ ( )Af F f− + Ω
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Ridge regression

the VC dimension of 
subject to:  

may be far lower than p+1: 

( )( )1
( , ) 1p

i ii
f X w sign w x

=
= +∑

2 2
1

1p
ii

W w
C=

= ≤∑

2

2min ; 1Rh int p
C

⎡ ⎤⎛ ⎞
≤ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
X R≤
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Since Vapnik’s inequality is an universal one,  
the upper bound may be too large. 
Exact VC-dimension are very difficult to 
obtain, and in the best case,  one only knows 
bounds 
But even if the previous inequality is not 
directly applicable, SRM theory proved that 
the complexity differs from the number of 
parameters, and gives  a way to handle 
methods where penalized likelihood is not 
applicable.
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5.6 Empirical model choice

The 3 samples procedure (Hastie & al., 2001) 
Learning set: estimates model parameters
Test : selection of the best model
Validation : estimates the performance for future data

Resample (eg: ‘bootstrap, 10-fold CV, …)
Final model : with all available data

Estimating model performance is different from
estimating the model
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Variability
Training set 70%, validation set 

30%, 30 times
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Linear discriminant analysis performs as well 
as logistic regression
AUC has a small (due to a large sample) but 
non neglectable variability
Large variability in subset selection (Saporta, Niang, 
2006)
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6 . Discussion

Models of data ≠ models for prediction
Models in Data Mining: no longer a (parsimonious) 
representation of real world coming from a scientific 
theory but merely a «blind» prediction technique. 
Penalized likelihood is intellectually appealing but of 
no help for complex models where parameters are 
constrained.
Statistical Learning Theory provides the 
concepts for supervised learning in a DM 
context: avoids overfitting and false discovery 
risk.
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One should use adequate and objective 
performance measures and not “ideology” to 
choose between models: eg AUC for binary 
classification
Empirical comparisons need resampling but 

assume that future data will be drawn from 
the same distribution: uncorrect when there 
are changes in the population
New challenges: 
• Data streams
• Complex data
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